9.13齿轮传动的失效形式与设计稳则
9.13.1 失效形式
齿轮传动是靠轮齿的啮合传动来传递运动和动力的,轮齿失效是齿轮常见的主要失效形式。由于齿轮传动装置有开式、闭式,齿面有软齿面、硬齿面,齿轮转速有高有低,载荷有轻重之分,所以设计应用中会出现各种不同的失效形式。齿轮传动的主要失效形式有轮齿折断齿面点蚀齿面磨损齿面胶合以及塑性变形等几种形式。
齿折断
轮齿折断轮齿折断通常有两种情况:一种是由于多次重复的弯曲应力和应力集中造成的疲劳折断;另一种是由于突然严重过载或冲击载荷作用引起的过载折断。这两种折断都起始于轮齿相部受拉的一侧。
齿宽较小的直齿轮往往发生全齿折断,因宽较大的直齿轮或斜齿轮则容易发生局部折断。


 
 齿面点蚀
齿面点蚀轮齿工作时,由于在齿面啮合处脉动循环变接触应力长期作用下,当应力峰值超过材料的接触疲劳极限,经过一定应力循环次数后,先在节线附近的齿报表面产生细微的疲劳裂纹。随着裂纹的扩展,将导致小块金属剥落,产生齿面点蚀。点蚀影响轮齿正常啮合,引起冲击和噪声,造成传动的不平稳。
点蚀常发生于润滑状态良好、齿面硬度较低(HB≤350 HBS)的闭式传动中。在开式传动中,由于因面的磨损较快,往往点蚀还来不及出现或扩展即被磨掉了,所以看不到点蚀现象。
齿面抗点蚀能力主要与齿面硬度有关,因面硬度越高,则机点蚀的能力越强。防止措施
 
 齿面磨损
因面磨损齿面磨损通常有两种情况:一种是由于灰尘、金属微粒等进入齿面间引起的磨损;另~种是由于齿面间相对滑动摩擦引起的磨损。一般情况下这两种磨损往往同时发生并相互促进。严重的磨损将使轮齿失去正确的齿形,齿
侧间隙增大而产中振动和噪声,甚至由于齿厚磨薄最终导致轮齿折断。
润滑良好、具有一定硬度和表面粗糙度较低的闭式齿轮传动,一般不会产生显著的磨损。在开式传动中,特别是在粉尘浓度大的场合下,齿面磨损将是主要的失效形式。防止措施


 4,齿面胶合高速重载传动时,啮合区载荷集中,温升快,因而易引起润滑失效;低速重载时,油膜不易形成,均可致使两齿面金属直接接触而熔粘到一起,随着运动的继续而使软齿面上的金属被撕下,在轮齿工作表面上形成与滑动方向一致的沟纹,这种现象称为齿面胶合。防止措施

为了防止产生胶合,除适当提高齿面硬度和降低齿面胶合表面粗糙度外,对于低速传动宜采用粘度大的润滑油,高速传动则应采用含有抗胶合添加剂的润滑油。
5.齿面塑性变形低速重载传动时,若轮齿齿面硬度较低,当齿面间作用力过大,啮合中的齿面表层材料就会沿着摩擦力方向产生塑性流动,这种现象称为塑性变形。在起动和过载频繁的传动中,容易产生齿面塑性变形。提高齿自硬度和采用粘度较高的润滑油,都有助于防止或减轻齿面的塑性变形。


9.13.2 设计准则
轮齿的失效形式很多,它们不大可能同时发生,却又相互联系,相互影响。例如轮齿表面产生点蚀后,实际接触面积减少将导致磨损的加剧,而过大的磨损又会导致轮齿的折断。可是在一定条件下,必有一种为主要失效形式。

在进行齿轮传动的设计计算时,应分析具体的工作条件,判断可能发生的主要失效形式,以确定相应的设计准则。

对于软齿面(硬度<350HBS)的闭式齿轮传动,由于齿面抗点蚀能力差,润滑条件良好,齿面点蚀将是主要的失效形式。在设计计算时,通常按齿面接触疲劳强度设计,再作齿根弯曲疲劳强度校核。

对于硬齿面(硬度>350HBS)的闭式齿轮传动,齿面抗点蚀能力强,但易发生齿根折断,齿根疲劳折断将是主要失效形式。在设计计算时,通常按齿根弯曲疲劳强度设计,再作齿面接触疲劳强度校核。

当一对齿轮均为铸铁制造时,一般只需作轮齿弯曲疲劳强度设计计算。
对于汽车、拖拉机的齿轮传动,过载或冲击引起的轮齿折断是其主要失效形式,宜先作轮齿过载折断设计计算,再作齿面接触疲劳强度校校。

对于开式传动,其主要失效形式将是齿面磨损。但由于磨损的机理比较复杂,到目前为止尚无成熟的设计计算方法,通常只能按齿根弯曲疲劳强度设计,再考虑磨损,将所求得的模数增大10%~20%。